Critical Exponent Analysis Applied to Surface Emg Signals for Gesture Recognition
نویسندگان
چکیده
Based on recent advances in non-linear analysis, the surface electromyography (sEMG) signal has been studied from the viewpoints of self-affinity and complexity. In this study, we examine usage of critical exponent analysis (CE) method, a fractal dimension (FD) estimator, to study properties of the sEMG signal and to deploy these properties to characterize different movements for gesture recognition. SEMG signals were recorded from thirty subjects with seven hand movements and eight muscle channels. Mean values and coefficient of variations of the CE from all experiments show that there are larger variations between hand movement types but there is small variation within the same type. It also shows that the CE feature related to the self-affine property for the sEMG signal extracted from different activities is in the range of 1.855~2.754. These results have also been evaluated by analysis-of-variance (p-value). Results show that the CE feature is more suitable to use as a learning parameter for a classifier compared with other representative features including root mean square, median frequency and Higuchi’s method. Most p-values of the CE feature were less than 0.0001. Thus the FD that is computed by the CE method can be applied to be used as a feature for a wide variety of sEMG applications.
منابع مشابه
EMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملQuantative Evaluation of the Efficiency of Facial Bio-potential Signals Based on Forehead Three-Channel Electrode Placement For Facial Gesture Recognition Applicable in a Human-Machine Interface
Introduction: Today, facial bio-potential signals are employed in many human-machine interface applications for enhancing and empowering the rehabilitation process. The main point to achieve that goal is to record appropriate bioelectric signals from the human face by placing and configuring electrodes over it in the right way. In this paper, heuristic geometrical position and configuration of ...
متن کاملStudy on Online Gesture sEMG Recognition
We have realized an online gesture recognition platform for hand gestures using 2-channel surface EMG signals acquired from the forearm. Several features, such as AMV, AMV ratio and fourth-order AR model coefficients are extracted from the sEMG signal and the gesture segments are recognized with a Weighted Euclidean Distance Classifier. An above 90% recognition rate has been achieved with only ...
متن کاملGenerating the Visual Biofeedback Signals Applicable to Reduction of Wrist Spasticity: A Pilot Study on Stroke Patients
Introduction: Application of biofeedback techniques in rehabilitation has turned into an exciting research area during the recent decade. Providing an appropriate visual or auditory biofeedback signal is the most critical requirement of a biofeedback technique. In this regard, changes in Surface Electromyography (SEMG) signals during wrist movement can be used to generate an indictable visual b...
متن کاملPreliminary Testing of a Hand Gesture Recognition Wristband Based on EMG and Inertial Sensor Fusion
Electromyography (EMG) is well suited for capturing static hand features involving relatively long and stable muscle activations. At the same time, inertial sensing can inherently capture dynamic features related to hand rotation and translation. This paper introduces a hand gesture recognition wristband based on combined EMG and IMU signals. Preliminary testing was performed on four healthy su...
متن کامل